liuxianhua
級別: 論壇先鋒
精華主題: 0
發(fā)帖數(shù)量: 611 個
工控威望: 1067 點
下載積分: 10234 分
在線時間: 572(小時)
注冊時間: 2008-11-19
最后登錄: 2013-02-22
查看liuxianhua的 主題 / 回貼
樓主  發(fā)表于: 2010-04-15 12:44
書上說16位數(shù)據(jù)寄存器的最高為符號位,0為正數(shù)1為負數(shù),正數(shù)的最大值為32767,負數(shù)的最大值為-32768,這我就不明白了,除了符號位外,其他15位都為1時,加起來是32767,為什么負數(shù)能儲存最高數(shù)是-32768呢?懇請高手指點,謝謝,謝謝!
ydp
級別: *
精華主題: * 篇
發(fā)帖數(shù)量: * 個
工控威望: * 點
下載積分: * 分
在線時間: (小時)
注冊時間: *
最后登錄: *
查看ydp的 主題 / 回貼
1樓  發(fā)表于: 2010-04-21 23:28
數(shù)值在計算機中表示形式為機器數(shù),計算機只能識別0和1,使用的是二進制,而在日常生活中人們使用的是十進制.
數(shù)值有正負之分,計算機就用一個數(shù)的最高位存放符號(0為正,1為負).這就是機器數(shù)的原碼了.假設機器能處理的位數(shù)為8.即字長為1byte,原碼能表示數(shù)值的范圍為

(-127~-0 +0~127)共256個.

有了數(shù)值的表示方法就可以對數(shù)進行算術運算.但是很快就發(fā)現(xiàn)用帶符號位的原碼進行乘除運算時結果正確,而在加減運算的時候就出現(xiàn)了問題,如下: 假設字長為8bits

( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10

(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 顯然不正確.

因為在兩個整數(shù)的加法運算中是沒有問題的,于是就發(fā)現(xiàn)問題出現(xiàn)在帶符號位的負數(shù)身上,對除符號位外的其余各位逐位取反就產生了反碼.反碼的取值空間和原碼相同且一一對應. 下面是反碼的減法運算:

( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10

(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有問題.

( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正確

問題出現(xiàn)在(+0)和(-0)上,在人們的計算概念中零是沒有正負之分的.(印度人首先將零作為標記并放入運算之中,包含有零號的印度數(shù)學和十進制計數(shù)對人類文明的貢獻極大).

于是就引入了補碼概念. 負數(shù)的補碼就是對反碼加一,而正數(shù)不變,正數(shù)的原碼反碼補碼是一樣的.在補碼中用(-128)代替了(-0),所以補碼的表示范圍為:

(-128~0~127)共256個.

注意:(-128)沒有相對應的原碼和反碼, (-128) = (10000000) 補碼的加減運算如下:

( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10

(00000001)補 + (11111111)補 = (00000000)補 = ( 0 ) 正確

( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10

(00000001) 補+ (11111110) 補= (11111111)補 = ( -1 ) 正確

所以補碼的設計目的是:

⑴使符號位能與有效值部分一起參加運算,從而簡化運算規(guī)則.

⑵使減法運算轉換為加法運算,進一步簡化計算機中運算器的線路設計

所有這些轉換都是在計算機的最底層進行的,而在我們使用的匯編、C等其他高級語言中使用的都是原碼。